Papers
Topics
Authors
Recent
2000 character limit reached

Supervising Unsupervised Learning (1709.05262v2)

Published 14 Sep 2017 in cs.AI, cs.LG, and stat.ML

Abstract: We introduce a framework to leverage knowledge acquired from a repository of (heterogeneous) supervised datasets to new unsupervised datasets. Our perspective avoids the subjectivity inherent in unsupervised learning by reducing it to supervised learning, and provides a principled way to evaluate unsupervised algorithms. We demonstrate the versatility of our framework via simple agnostic bounds on unsupervised problems. In the context of clustering, our approach helps choose the number of clusters and the clustering algorithm, remove the outliers, and provably circumvent the Kleinberg's impossibility result. Experimental results across hundreds of problems demonstrate improved performance on unsupervised data with simple algorithms, despite the fact that our problems come from heterogeneous domains. Additionally, our framework lets us leverage deep networks to learn common features from many such small datasets, and perform zero shot learning.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.