Papers
Topics
Authors
Recent
2000 character limit reached

Meta-Unsupervised-Learning: A supervised approach to unsupervised learning (1612.09030v2)

Published 29 Dec 2016 in cs.LG, cs.AI, and cs.CV

Abstract: We introduce a new paradigm to investigate unsupervised learning, reducing unsupervised learning to supervised learning. Specifically, we mitigate the subjectivity in unsupervised decision-making by leveraging knowledge acquired from prior, possibly heterogeneous, supervised learning tasks. We demonstrate the versatility of our framework via comprehensive expositions and detailed experiments on several unsupervised problems such as (a) clustering, (b) outlier detection, and (c) similarity prediction under a common umbrella of meta-unsupervised-learning. We also provide rigorous PAC-agnostic bounds to establish the theoretical foundations of our framework, and show that our framing of meta-clustering circumvents Kleinberg's impossibility theorem for clustering.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.