Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Control-Oriented Learning on the Fly (1709.04889v2)

Published 14 Sep 2017 in math.OC, cs.LG, cs.RO, and cs.SY

Abstract: This paper focuses on developing a strategy for control of systems whose dynamics are almost entirely unknown. This situation arises naturally in a scenario where a system undergoes a critical failure. In that case, it is imperative to retain the ability to satisfy basic control objectives in order to avert an imminent catastrophe. A prime example of such an objective is the reach-avoid problem, where a system needs to move to a certain state in a constrained state space. To deal with limitations on our knowledge of system dynamics, we develop a theory of myopic control. The primary goal of myopic control is to, at any given time, optimize the current direction of the system trajectory, given solely the information obtained about the system until that time. We propose an algorithm that uses small perturbations in the control effort to learn local dynamics while simultaneously ensuring that the system moves in a direction that appears to be nearly optimal, and provide hard bounds for its suboptimality. We additionally verify the usefulness of the algorithm on a simulation of a damaged aircraft seeking to avoid a crash, as well as on an example of a Van der Pol oscillator.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.