Recursive Exponential Weighting for Online Non-convex Optimization (1709.04136v1)
Abstract: In this paper, we investigate the online non-convex optimization problem which generalizes the classic {online convex optimization problem by relaxing the convexity assumption on the cost function. For this type of problem, the classic exponential weighting online algorithm has recently been shown to attain a sub-linear regret of $O(\sqrt{T\log T})$. In this paper, we introduce a novel recursive structure to the online algorithm to define a recursive exponential weighting algorithm that attains a regret of $O(\sqrt{T})$, matching the well-known regret lower bound. To the best of our knowledge, this is the first online algorithm with provable $O(\sqrt{T})$ regret for the online non-convex optimization problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.