Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Continuous Submodular Maximization (1802.06052v1)

Published 16 Feb 2018 in stat.ML, cs.AI, cs.DS, and cs.LG

Abstract: In this paper, we consider an online optimization process, where the objective functions are not convex (nor concave) but instead belong to a broad class of continuous submodular functions. We first propose a variant of the Frank-Wolfe algorithm that has access to the full gradient of the objective functions. We show that it achieves a regret bound of $O(\sqrt{T})$ (where $T$ is the horizon of the online optimization problem) against a $(1-1/e)$-approximation to the best feasible solution in hindsight. However, in many scenarios, only an unbiased estimate of the gradients are available. For such settings, we then propose an online stochastic gradient ascent algorithm that also achieves a regret bound of $O(\sqrt{T})$ regret, albeit against a weaker $1/2$-approximation to the best feasible solution in hindsight. We also generalize our results to $\gamma$-weakly submodular functions and prove the same sublinear regret bounds. Finally, we demonstrate the efficiency of our algorithms on a few problem instances, including non-convex/non-concave quadratic programs, multilinear extensions of submodular set functions, and D-optimal design.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lin Chen (384 papers)
  2. Hamed Hassani (120 papers)
  3. Amin Karbasi (116 papers)
Citations (79)