Papers
Topics
Authors
Recent
2000 character limit reached

Quasi-polynomial Hitting Sets for Circuits with Restricted Parse Trees (1709.03068v2)

Published 10 Sep 2017 in cs.CC

Abstract: We study the class of non-commutative Unambiguous circuits or Unique-Parse-Tree (UPT) circuits, and a related model of Few-Parse-Trees (FewPT) circuits (which were recently introduced by Lagarde, Malod and Perifel [LMP16] and Lagarde, Limaye and Srinivasan [LLS17]) and give the following constructions: (1) An explicit hitting set of quasipolynomial size for UPT circuits, (2) An explicit hitting set of quasipolynomial size for FewPT circuits (circuits with constantly many parse tree shapes), (3) An explicit hitting set of polynomial size for UPT circuits (of known parse tree shape), when a parameter of preimage-width is bounded by a constant. The above three results are extensions of the results of [AGKS15], [GKST15] and [GKS16] to the setting of UPT circuits, and hence also generalize their results in the commutative world from read-once oblivious algebraic branching programs (ROABPs) to UPT-set-multilinear circuits. The main idea is to study shufflings of non-commutative polynomials, which can then be used to prove suitable depth reduction results for UPT circuits and thereby allow a careful translation of the ideas in [AGKS15], [GKST15] and [GKS16].

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.