Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-time convolutional networks for sonar image classification in low-power embedded systems (1709.02153v1)

Published 7 Sep 2017 in cs.CV and cs.RO

Abstract: Deep Neural Networks have impressive classification performance, but this comes at the expense of significant computational resources at inference time. Autonomous Underwater Vehicles use low-power embedded systems for sonar image perception, and cannot execute large neural networks in real-time. We propose the use of max-pooling aggressively, and we demonstrate it with a Fire-based module and a new Tiny module that includes max-pooling in each module. By stacking them we build networks that achieve the same accuracy as bigger ones, while reducing the number of parameters and considerably increasing computational performance. Our networks can classify a 96x96 sonar image with 98.8 - 99.7 accuracy on only 41 to 61 milliseconds on a Raspberry Pi 2, which corresponds to speedups of 28.6 - 19.7.

Citations (9)

Summary

We haven't generated a summary for this paper yet.