Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spoken English Intelligibility Remediation with PocketSphinx Alignment and Feature Extraction Improves Substantially over the State of the Art (1709.01713v3)

Published 6 Sep 2017 in cs.CL and stat.ML

Abstract: We use automatic speech recognition to assess spoken English learner pronunciation based on the authentic intelligibility of the learners' spoken responses determined from support vector machine (SVM) classifier or deep learning neural network model predictions of transcription correctness. Using numeric features produced by PocketSphinx alignment mode and many recognition passes searching for the substitution and deletion of each expected phoneme and insertion of unexpected phonemes in sequence, the SVM models achieve 82 percent agreement with the accuracy of Amazon Mechanical Turk crowdworker transcriptions, up from 75 percent reported by multiple independent researchers. Using such features with SVM classifier probability prediction models can help computer-aided pronunciation teaching (CAPT) systems provide intelligibility remediation.

Citations (7)

Summary

We haven't generated a summary for this paper yet.