Common factors, trends, and cycles in large datasets (1709.01445v2)
Abstract: This paper considers a non-stationary dynamic factor model for large datasets to disentangle long-run from short-run co-movements. We first propose a new Quasi Maximum Likelihood estimator of the model based on the Kalman Smoother and the Expectation Maximisation algorithm. The asymptotic properties of the estimator are discussed. Then, we show how to separate trends and cycles in the factors by mean of eigenanalysis of the estimated non-stationary factors. Finally, we employ our methodology on a panel of US quarterly macroeconomic indicators to estimate aggregate real output, or Gross Domestic Output, and the output gap.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.