Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A FE-inexact heterogeneous ADMM for Elliptic Optimal Control Problems with {$L^1$}-Control Cost (1709.01067v1)

Published 3 Sep 2017 in math.OC

Abstract: Elliptic PDE-constrained optimal control problems with $L1$-control cost ($L1$-EOCP) are considered. To solve $L1$-EOCP, the primal-dual active set (PDAS) method, which is a special semismooth Newton (SSN) method, used to be a priority. However, in general solving Newton equations is expensive. Motivated by the success of alternating direction method of multipliers (ADMM), we consider extending the ADMM to $L1$-EOCP. To discretize $L1$-EOCP, the piecewise linear finite element (FE) is considered. However, different from the finite dimensional $l1$-norm, the discretized $L1$-norm does not have a decoupled form. To overcome this difficulty, an effective approach is utilizing nodal quadrature formulas to approximately discretize the $L1$-norm and $L2$-norm. It is proved that these approximation steps will not change the order of error estimates. To solve the discretized problem, an inexact heterogeneous ADMM (ihADMM) is proposed. Different from the classical ADMM, the ihADMM adopts two different weighted inner product to define the augmented Lagrangian function in two subproblems, respectively. Benefiting from such different weighted techniques, two subproblems of ihADMM can be efficiently implemented. Furthermore, theoretical results on the global convergence as well as the iteration complexity results $o(1/k)$ for ihADMM are given. In order to obtain more accurate solution, a two-phase strategy is also presented, in which the primal-dual active set (PDAS) method is used as a postprocessor of the ihADMM. Numerical results not only confirm error estimates, but also show that the ihADMM and the two-phase strategy are highly efficient.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.