Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Morse property for functions of Kirchhoff-Routh path type (1708.09315v1)

Published 30 Aug 2017 in math.AP

Abstract: For a bounded domain $\Omega\subset\mathbb{R}n$ let $H_\Omega:\Omega\times\Omega\to\mathbb{R}$ be the regular part of the Dirichlet Green function for the Laplace operator. Given a fixed arbitrary ${\mathcal C}2$ function $f:{\mathcal D}\to\mathbb{R}$, defined on an open subset ${\mathcal D}\subset\mathbb{R}{nN}$, and fixed coefficients $\lambda_1,\dots,\lambda_N\in\mathbb{R}\setminus{0}$ we consider the function $f_\Omega:{\mathcal D}\cap\OmegaN\to\mathbb{R}$ defined as [ f_\Omega(x_1,\dots,x_N) = f(x_1,\dots,x_N) - \sum_{j,k=1}N \lambda_j\lambda_k H_\Omega(x_j,x_k). ] We prove that $f_\Omega$ is a Morse function for most domains $\Omega$ of class ${\mathcal C}{m+2,\alpha}$, any $m\ge0$, $0<\alpha<1$. This applies in particular to the Robin function $h:\Omega\to\mathbb{R}$, $h(x)=H_\Omega(x,x)$, and to the Kirchhoff-Routh path function where $\Omega\subset\mathbb{R}2$, ${\mathcal D}={x\in\mathbb{R}{2N}: \text{$x_j\ne x_k$ for $j\ne k$}}$, and [ f(x_1,\dots,x_N) = - \frac{1}{2\pi}\sum_{\genfrac{}{}{0pt}{}{j,k=1}{j\ne k}}N\lambda_j\lambda_k\log|x_j-x_k|. ]

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.