Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Random Morse functions and spectral geometry (1209.0639v3)

Published 4 Sep 2012 in math.DG, math.AP, and math.PR

Abstract: We study random Morse functions on a Riemann manifold $(Mm,g)$ defined as a random Gaussian weighted superpositions of eigenfunctions of the Laplacian of the metric $g$. The randomness is determined by a fixed Schwartz function $w$ and a small parameter $\varepsilon>0$. We first prove that as $\varepsilon\to 0$ the expected distribution of critical values of this random function approaches a universal measure on $\mathbb{R}$, independent of $g$, that can be explicitly described in terms the expected distribution of eigenvalues of the Gaussian Wigner ensemble of random $(m+1)\times (m+1)$ symmetric matrices. In contrast, we prove that the metric $g$ and its curvature are determined by the statistics of the Hessians of the random function for small $\varepsilon$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.