Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Smooth functions on 2-torus whose Kronrod-Reeb graph contains a cycle (1411.6863v1)

Published 25 Nov 2014 in math.GT

Abstract: Let $f:M\to \mathbb{R}$ be a Morse function on a connected compact surface $M$, and $\mathcal{S}(f)$ and $\mathcal{O}(f)$ be respectively the stabilizer and the orbit of $f$ with respect to the right action of the group of diffeomorphisms $\mathcal{D}(M)$. In a series of papers the first author described the homotopy types of connected components of $\mathcal{S}(f)$ and $\mathcal{O}(f)$ for the cases when $M$ is either a $2$-disk or a cylinder or $\chi(M)<0$. Moreover, in two papers the authors considered special classes of smooth functions on $2$-torus $T2$ and shown that the computations of $\pi_1\mathcal{O}(f)$ for those functions reduces to the cases of $2$-disk and cylinder. In the present paper we consider another class of Morse functions $f:T2\to\mathbb{R}$ whose KR-graphs have exactly one cycle and prove that for every such function there exists a subsurface $Q\subset T2$, diffeomorphic with a cylinder, such that $\pi_1\mathcal{O}(f)$ is expressed via the fundamental group $\pi_1\mathcal{O}(f|_{Q})$ of the restriction of $f$ to $Q$. This result holds for a larger class of smooth functions $f:T2\to \mathbb{R}$ having the following property: for every critical point $z$ of $f$ the germ of $f$ at $z$ is smoothly equivalent to a homogeneous polynomial $\mathbb{R}2\to \mathbb{R}$ without multiple factors.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.