Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Haircutting Non-cash Collateral (1708.07585v1)

Published 25 Aug 2017 in q-fin.PR, q-fin.MF, and q-fin.RM

Abstract: Haircutting non-cash collateral has become a key element of the post-crisis reform of the shadow banking system and OTC derivatives markets. This article develops a parametric haircut model by expanding haircut definitions beyond the traditional value-at-risk measure and employing a double-exponential jump-diffusion model for collateral market risk. Haircuts are solved to target credit risk measurements, including probability of default, expected loss or unexpected loss criteria. Comparing to data-driven approach typically run on proxy data series, the model enables sensitivity analysis and stress test, captures market liquidity risk, allows idiosyncratic risk adjustments, and incorporates relevant market information. Computational results for main equities, securitization, and corporate bonds show potential for uses in collateral agreements, e.g. CSAs, and for regulatory capital calculations.

Summary

We haven't generated a summary for this paper yet.