Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unbiased Shrinkage Estimation

Published 21 Aug 2017 in math.ST, econ.EM, stat.ME, and stat.TH | (1708.06436v2)

Abstract: Shrinkage estimation usually reduces variance at the cost of bias. But when we care only about some parameters of a model, I show that we can reduce variance without incurring bias if we have additional information about the distribution of covariates. In a linear regression model with homoscedastic Normal noise, I consider shrinkage estimation of the nuisance parameters associated with control variables. For at least three control variables and exogenous treatment, I establish that the standard least-squares estimator is dominated with respect to squared-error loss in the treatment effect even among unbiased estimators and even when the target parameter is low-dimensional. I construct the dominating estimator by a variant of James-Stein shrinkage in a high-dimensional Normal-means problem. It can be interpreted as an invariant generalized Bayes estimator with an uninformative (improper) Jeffreys prior in the target parameter.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.