Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Bias Reduction in Instrumental Variable Estimation through First-Stage Shrinkage (1708.06443v2)

Published 21 Aug 2017 in math.ST, econ.EM, stat.ME, and stat.TH

Abstract: The two-stage least-squares (2SLS) estimator is known to be biased when its first-stage fit is poor. I show that better first-stage prediction can alleviate this bias. In a two-stage linear regression model with Normal noise, I consider shrinkage in the estimation of the first-stage instrumental variable coefficients. For at least four instrumental variables and a single endogenous regressor, I establish that the standard 2SLS estimator is dominated with respect to bias. The dominating IV estimator applies James-Stein type shrinkage in a first-stage high-dimensional Normal-means problem followed by a control-function approach in the second stage. It preserves invariances of the structural instrumental variable equations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.