Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Relative Gromov Width of Lagrangian Cobordisms between Legendrians

Published 10 Aug 2017 in math.SG | (1708.03356v3)

Abstract: We obtain upper and lower bounds for the relative Gromov width of Lagrangian cobordisms between Legendrian submanifolds. Upper bounds arise from the existence of $J$-holomorphic disks with boundary on the Lagrangian cobordism that pass through the center of any given symplectically embedded ball. The areas of these disks --- and hence the sizes of these balls --- are controlled by a real-valued fundamental capacity, a quantity derived from the algebraic structure of filtered linearized Legendrian Contact Homology of the Legendrian at the top of the cobordism. Lower bounds come from explicit constructions that use neighborhoods of Reeb chords in the Legendrian ends. We also study relationships between the relative Gromov width and another quantitative measurement, the length of a Lagrangian cobordism.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.