Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Distributed Hierarchical SVD in the Hierarchical Tucker Format (1708.03340v2)

Published 10 Aug 2017 in math.NA

Abstract: We consider tensors in the Hierarchical Tucker format and suppose the tensor data to be distributed among several compute nodes. We assume the compute nodes to be in a one-to-one correspondence with the nodes of the Hierarchical Tucker format such that connected nodes can communicate with each other. An appropriate tree structure in the Hierarchical Tucker format then allows for the parallelization of basic arithmetic operations between tensors with a parallel runtime which grows like $\log(d)$, where $d$ is the tensor dimension. We introduce parallel algorithms for several tensor operations, some of which can be applied to solve linear equations $\mathcal{A}X=B$ directly in the Hierarchical Tucker format using iterative methods like conjugate gradients or multigrid. We present weak scaling studies, which provide evidence that the runtime of our algorithms indeed grows like $\log(d)$. Furthermore, we present numerical experiments in which we apply our algorithms to solve a parameter-dependent diffusion equation in the Hierarchical Tucker format by means of a multigrid algorithm.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.