Papers
Topics
Authors
Recent
2000 character limit reached

Why Adaptively Collected Data Have Negative Bias and How to Correct for It (1708.01977v2)

Published 7 Aug 2017 in stat.ML and cs.LG

Abstract: From scientific experiments to online A/B testing, the previously observed data often affects how future experiments are performed, which in turn affects which data will be collected. Such adaptivity introduces complex correlations between the data and the collection procedure. In this paper, we prove that when the data collection procedure satisfies natural conditions, then sample means of the data have systematic \emph{negative} biases. As an example, consider an adaptive clinical trial where additional data points are more likely to be tested for treatments that show initial promise. Our surprising result implies that the average observed treatment effects would underestimate the true effects of each treatment. We quantitatively analyze the magnitude and behavior of this negative bias in a variety of settings. We also propose a novel debiasing algorithm based on selective inference techniques. In experiments, our method can effectively reduce bias and estimation error.

Citations (84)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.