Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Debiasing for Adaptively Collected High-dimensional Data with Applications to Time Series Analysis (1911.01040v3)

Published 4 Nov 2019 in stat.ME, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: Adaptive collection of data is commonplace in applications throughout science and engineering. From the point of view of statistical inference however, adaptive data collection induces memory and correlation in the samples, and poses significant challenge. We consider the high-dimensional linear regression, where the samples are collected adaptively, and the sample size $n$ can be smaller than $p$, the number of covariates. In this setting, there are two distinct sources of bias: the first due to regularization imposed for consistent estimation, e.g. using the LASSO, and the second due to adaptivity in collecting the samples. We propose "online debiasing", a general procedure for estimators such as the LASSO, which addresses both sources of bias. In two concrete contexts $(i)$ time series analysis and $(ii)$ batched data collection, we demonstrate that online debiasing optimally debiases the LASSO estimate when the underlying parameter $\theta_0$ has sparsity of order $o(\sqrt{n}/\log p)$. In this regime, the debiased estimator can be used to compute $p$-values and confidence intervals of optimal size.

Citations (30)

Summary

We haven't generated a summary for this paper yet.