Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Code algebras, axial algebras and VOAs (1707.07992v4)

Published 25 Jul 2017 in math.RA, math.GR, and math.OA

Abstract: Inspired by code vertex operator algebras (VOAs) and their representation theory, we define code algebras, a new class of commutative non-associative algebras constructed from binary linear codes. Let $C$ be a binary linear code of length $n$. A basis for the code algebra $A_C$ consists of $n$ idempotents and a vector for each non-constant codeword of $C$. We show that code algebras are almost always simple and, under mild conditions on their structure constants, admit an associating bilinear form. We determine the Peirce decomposition and the fusion law for the idempotents in the basis, and we give a construction to find additional idempotents, called the $s$-map, which comes from the code structure. For a general code algebra, we classify the eigenvalues and eigenvectors of the smallest examples of the $s$-map construction, and hence show that certain code algebras are axial algebras. We give some examples, including that for a Hamming code $H_8$ where the code algebra $A_{H_8}$ is an axial algebra and embeds in the code VOA $V_{H_8}$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.