Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Decomposition algebras and axial algebras (1905.03481v3)

Published 9 May 2019 in math.RA and math.GR

Abstract: We introduce decomposition algebras as a natural generalization of axial algebras, Majorana algebras and the Griess algebra. They remedy three limitations of axial algebras: (1) They separate fusion laws from specific values in a field, thereby allowing repetition of eigenvalues; (2) They allow for decompositions that do not arise from multiplication by idempotents; (3) They admit a natural notion of homomorphisms, making them into a nice category. We exploit these facts to strengthen the connection between axial algebras and groups. In particular, we provide a definition of a universal Miyamoto group which makes this connection functorial under some mild assumptions. We illustrate our theory by explaining how representation theory and association schemes can help to build a decomposition algebra for a given (permutation) group. This construction leads to a large number of examples. We also take the opportunity to fix some terminology in this rapidly expanding subject.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.