Papers
Topics
Authors
Recent
Search
2000 character limit reached

Predicting the Gender of Indonesian Names

Published 22 Jul 2017 in cs.CL | (1707.07129v2)

Abstract: We investigated a way to predict the gender of a name using character-level Long-Short Term Memory (char-LSTM). We compared our method with some conventional machine learning methods, namely Naive Bayes, logistic regression, and XGBoost with n-grams as the features. We evaluated the models on a dataset consisting of the names of Indonesian people. It is not common to use a family name as the surname in Indonesian culture, except in some ethnicities. Therefore, we inferred the gender from both full names and first names. The results show that we can achieve 92.25% accuracy from full names, while using first names only yields 90.65% accuracy. These results are better than the ones from applying the classical machine learning algorithms to n-grams.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.