Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers

Published 19 Jul 2017 in cs.CR, cs.LG, and cs.NE | (1707.05970v5)

Abstract: In this paper, we present a black-box attack against API call based machine learning malware classifiers, focusing on generating adversarial sequences combining API calls and static features (e.g., printable strings) that will be misclassified by the classifier without affecting the malware functionality. We show that this attack is effective against many classifiers due to the transferability principle between RNN variants, feed forward DNNs, and traditional machine learning classifiers such as SVM. We also implement GADGET, a software framework to convert any malware binary to a binary undetected by malware classifiers, using the proposed attack, without access to the malware source code.

Citations (48)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.