Papers
Topics
Authors
Recent
2000 character limit reached

A dichotomy for groupoid C*-algebras (1707.04516v2)

Published 14 Jul 2017 in math.OA

Abstract: We study the finite versus infinite nature of C*-algebras arising from etale groupoids. For an ample groupoid G, we relate infiniteness of the reduced C*-algebra of G to notions of paradoxicality of a K-theoretic flavor. We construct a pre-ordered abelian monoid S(G) which generalizes the type semigroup introduced by R{\o}rdam and Sierakowski for totally disconnected discrete transformation groups. This monoid reflects the finite/infinite nature of the reduced groupoid C*-algebra of G. If G is ample, minimal, and topologically principal, and S(G) is almost unperforated we obtain a dichotomy between stable finiteness and pure infiniteness for the reduced C*-algebra of G.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.