Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Score-informed syllable segmentation for a cappella singing voice with convolutional neural networks (1707.03544v1)

Published 12 Jul 2017 in cs.SD

Abstract: This paper introduces a new score-informed method for the segmentation of jingju a cappella singing phrase into syllables. The proposed method estimates the most likely sequence of syllable boundaries given the estimated syllable onset detection function (ODF) and its score. Throughout the paper, we first examine the jingju syllables structure and propose a definition of the term "syllable onset". Then, we identify which are the challenges that jingju a cappella singing poses. Further, we investigate how to improve the syllable ODF estimation with convolutional neural networks (CNNs). We propose a novel CNN architecture that allows to efficiently capture different time-frequency scales for estimating syllable onsets. In addition, we propose using a score-informed Viterbi algorithm -instead of thresholding the onset function-, because the available musical knowledge we have (the score) can be used to inform the Viterbi algorithm in order to overcome the identified challenges. The proposed method outperforms the state-of-the-art in syllable segmentation for jingju a cappella singing. We further provide an analysis of the segmentation errors which points possible research directions.

Citations (10)

Summary

We haven't generated a summary for this paper yet.