Papers
Topics
Authors
Recent
2000 character limit reached

The algebraic Bethe Ansatz and combinatorial trees

Published 9 Jul 2017 in math.CO, math-ph, math.MP, and nlin.SI | (1707.02584v2)

Abstract: We present in this paper a comprehensive introduction to the algebraic Bethe Ansatz, taking as examples the six-vertex model with periodic and non-periodic boundary conditions. We propose a diagrammatic representation of the commutation relations used in the algebraic Bethe Ansatz, so that the action of the transfer matrix in the nth excited state gives place to labeled combinatorial trees. The analysis of these combinatorial trees provides in a straightforward way the eigenvalues and eigenstates of the transfer matrix, as well as the respective Bethe Ansatz equations. Several identities between the R-matrix elements can also be derived from the symmetry of these diagrams regarding the permutation of their labels. This combinatorial approach gives some insights about how the algebraic Bethe Ansatz works, which can be valuable for non-experts readers.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.