Papers
Topics
Authors
Recent
2000 character limit reached

Global optimality conditions for deep neural networks

Published 8 Jul 2017 in cs.LG, math.OC, and stat.ML | (1707.02444v3)

Abstract: We study the error landscape of deep linear and nonlinear neural networks with the squared error loss. Minimizing the loss of a deep linear neural network is a nonconvex problem, and despite recent progress, our understanding of this loss surface is still incomplete. For deep linear networks, we present necessary and sufficient conditions for a critical point of the risk function to be a global minimum. Surprisingly, our conditions provide an efficiently checkable test for global optimality, while such tests are typically intractable in nonconvex optimization. We further extend these results to deep nonlinear neural networks and prove similar sufficient conditions for global optimality, albeit in a more limited function space setting.

Citations (117)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.