Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small nonlinearities in activation functions create bad local minima in neural networks (1802.03487v4)

Published 10 Feb 2018 in cs.LG, math.OC, and stat.ML

Abstract: We investigate the loss surface of neural networks. We prove that even for one-hidden-layer networks with "slightest" nonlinearity, the empirical risks have spurious local minima in most cases. Our results thus indicate that in general "no spurious local minima" is a property limited to deep linear networks, and insights obtained from linear networks may not be robust. Specifically, for ReLU(-like) networks we constructively prove that for almost all practical datasets there exist infinitely many local minima. We also present a counterexample for more general activations (sigmoid, tanh, arctan, ReLU, etc.), for which there exists a bad local minimum. Our results make the least restrictive assumptions relative to existing results on spurious local optima in neural networks. We complete our discussion by presenting a comprehensive characterization of global optimality for deep linear networks, which unifies other results on this topic.

Citations (88)

Summary

We haven't generated a summary for this paper yet.