Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Self-injective Jacobian algebras from Postnikov diagrams (1706.08756v4)

Published 27 Jun 2017 in math.RT

Abstract: We study a finite-dimensional algebra $\Lambda$ constructed from a Postnikov diagram $D$ in a disk, obtained from the dimer algebra of Baur-King-Marsh by factoring out the ideal generated by the boundary idempotent. Thus $\Lambda$ is isomorphic to the stable endomorphism algebra of the cluster tilting module $T\in\underline{\operatorname{CM}}(B)$ introduced by Jensen-King-Su in order to categorify the cluster algebra structure of $\mathbb C[\operatorname{Gr}_k(\mathbb Cn)]$. We show that $\Lambda$ is self-injective if and only if $D$ has a certain rotational symmetry. In this case, $\Lambda$ is the Jacobian algebra of a self-injective quiver with potential, which implies that its truncated Jacobian algebras in the sense of Herschend-Iyama are 2-representation finite. We study cuts and mutations of such quivers with potential leading to some new 2-representation finite algebras.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube