Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Derived Auslander-Iyama Correspondence (2208.14413v5)

Published 30 Aug 2022 in math.RT, math.AG, math.AT, math.KT, and math.QA

Abstract: We work over a perfect field. Recent work of the third-named author established a Derived Auslander Correspondence that relates finite-dimensional self-injective algebras that are twisted $3$-periodic to algebraic triangulated categories of finite type. Moreover, the aforementioned work also shows that the latter triangulated categories admit a unique differential graded enhancement. In this article we prove a higher-dimensional version of this result that, given an integer $d\geq1$, relates twisted $(d+2)$-periodic algebras to algebraic triangulated categories with a $d\mathbb{Z}$-cluster tilting object. We also show that the latter triangulated categories admit a unique differential graded enhancement. Our result yields recognition theorems for interesting algebraic triangulated categories, such as the Amiot cluster category of a self-injective quiver with potential in the sense of Herschend and Iyama and, more generally, the Amiot-Guo-Keller cluster category associated with a $d$-representation finite algebra in the sense of Iyama and Oppermann. As an application of our result, we obtain infinitely many triangulated categories with a unique differential graded enhancement that is not strongly unique. In the appendix, B. Keller explains how -- combined with crucial results of August and Hua-Keller -- our main result yields the last key ingredient to prove the Donovan-Wemyss Conjecture in the context of the Homological Minimal Model Program for threefolds.

Summary

We haven't generated a summary for this paper yet.