Papers
Topics
Authors
Recent
2000 character limit reached

Improving Gravitational Search Algorithm Performance with Artificial Bee Colony Algorithm for Constrained Numerical Optimization

Published 16 Jan 2017 in cs.NE | (1706.03608v1)

Abstract: In this paper, we propose an improved gravitational search algorithm named GSABC. The algorithm improves gravitational search algorithm (GSA) results improved by using artificial bee colony algorithm (ABC) to solve constrained numerical optimization problems. In GSA, solutions are attracted towards each other by applying gravitational forces, which depending on the masses assigned to the solutions, to each other. The heaviest mass will move slower than other masses and gravitate others. Due to nature of gravitation, GSA may pass global minimum if some solutions stuck to local minimum. ABC updates the positions of the best solutions that has obtained from GSA, preventing the GSA from sticking to the local minimum by its strong searching ability. The proposed algorithm improves the performance of GSA. The proposed method tested on 23 well-known unimodal, multimodal and fixed-point multimodal benchmark test functions. Experimental results show that GSABC outperforms or performs similarly to five state-of-the-art optimization approaches.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.