Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
87 tokens/sec
Gemini 2.5 Pro Premium
36 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
39 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
460 tokens/sec
Kimi K2 via Groq Premium
219 tokens/sec
2000 character limit reached

A binary variant of gravitational search algorithm and its application to windfarm layout optimization problem (2107.11844v1)

Published 25 Jul 2021 in cs.NE, cs.AI, cs.LG, and math.OC

Abstract: In the binary search space, GSA framework encounters the shortcomings of stagnation, diversity loss, premature convergence and high time complexity. To address these issues, a novel binary variant of GSA called `A novel neighbourhood archives embedded gravitational constant in GSA for binary search space (BNAGGSA)' is proposed in this paper. In BNAGGSA, the novel fitness-distance based social interaction strategy produces a self-adaptive step size mechanism through which the agent moves towards the optimal direction with the optimal step size, as per its current search requirement. The performance of the proposed algorithm is compared with the two binary variants of GSA over 23 well-known benchmark test problems. The experimental results and statistical analyses prove the supremacy of BNAGGSA over the compared algorithms. Furthermore, to check the applicability of the proposed algorithm in solving real-world applications, a windfarm layout optimization problem is considered. Two case studies with two different wind data sets of two different wind sites is considered for experiments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.