Fast Low-Rank Kernel Matrix Factorization through Skeletonized Interpolation (1706.02812v6)
Abstract: Integral equations are commonly encountered when solving complex physical problems. Their discretization leads to a dense kernel matrix that is block or hierarchically low-rank. This paper proposes a new way to build a low-rank factorization of those low-rank blocks at a nearly optimal cost of $\mathcal{O}(nr)$ for a $n \times n$ block submatrix of rank r. This is done by first sampling the kernel function at new interpolation points, then selecting a subset of those using a CUR decomposition and finally using this reduced set of points as pivots for a RRLU-type factorization. We also explain how this implicitly builds an optimal interpolation basis for the Kernel under consideration. We show the asymptotic convergence of the algorithm, explain his stability and demonstrate on numerical examples that it performs very well in practice, allowing to obtain rank nearly equal to the optimal rank at a fraction of the cost of the naive algorithm.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.