Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heat trace asymptotics on equiregular sub-Riemannian manifolds (1706.02450v3)

Published 8 Jun 2017 in math.DG and math.PR

Abstract: We study a "div-grad type" sub-Laplacian with respect to a smooth measure and its associated heat semigroup on a compact equiregular sub-Riemannian manifold. We prove a short time asymptotic expansion of the heat trace up to any order. Our main result holds true for any smooth measure on the manifold, but it has a spectral geometric meaning when Popp's measure is considered. Our proof is probabilistic. In particular, we use S. Watanabe's distributional Malliavin calculus.

Summary

We haven't generated a summary for this paper yet.