Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relative heat content asymptotics for sub-Riemannian manifolds (2110.03926v2)

Published 8 Oct 2021 in math.AP, math.DG, and math.FA

Abstract: The relative heat content associated with a subset $\Omega\subset M$ of a sub-Riemannian manifold, is defined as the total amount of heat contained in $\Omega$ at time $t$, with uniform initial condition on $\Omega$, allowing the heat to flow outside the domain. In this work, we obtain a fourth-order asymptotic expansion in square root of $t$ of the relative heat content associated with relatively compact non-characteristic domains. Compared to the classical heat content that we studied in [Rizzi, Rossi - J. Math. Pur. Appl., 2021], several difficulties emerge due to the absence of Dirichlet conditions at the boundary of the domain. To overcome this lack of information, we combine a rough asymptotic for the temperature function at the boundary, coupled with stochastic completeness of the heat semi-group. Our technique applies to any (possibly rank-varying) sub-Riemannian manifold that is globally doubling and satisfies a global weak Poincar\'e inequality, including in particular sub-Riemannian structures on compact manifolds and Carnot groups.

Summary

We haven't generated a summary for this paper yet.