Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral asymptotics for sub-Riemannian Laplacians (2212.02920v1)

Published 6 Dec 2022 in math.DG, math.MG, and math.SP

Abstract: We study spectral properties of sub-Riemannian Laplacians, which are hypoelliptic operators. The main objective is to obtain quantum ergodicity results, what we have achieved in the 3D contact case. In the general case we study the small-time asymptotics of sub-Riemannian heat kernels. We prove that they are given by the nilpotentized heat kernel. In the equiregular case, we infer the local and microlocal Weyl law, putting in light the Weyl measure in sR geometry. This measure coincides with the Popp measure in low dimension but differs from it in general. We prove that spectral concentration occurs on the shief generated by Lie brackets of length r-1, where r is the degree of nonholonomy. In the singular case, like Martinet or Grushin, the situation is more involved but we obtain small-time asymptotic expansions of the heat kernel and the Weyl law in some cases. Finally, we give the Weyl law in the general singular case, under the assumption that the singular set is stratifiable.

Citations (14)

Summary

We haven't generated a summary for this paper yet.