Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Short time full asymptotic expansion of hypoelliptic heat kernel at the cut locus (1603.01386v4)

Published 4 Mar 2016 in math.PR, math.AP, and math.DG

Abstract: In this paper we prove a short time asymptotic expansion of a hypoelliptic heat kernel on an Euclidean space and a compact manifold. We study the "cut locus" case, namely, the case where energy-minimizing paths which join the two points under consideration form not a finite set, but a compact manifold. Under mild assumptions we obtain an asymptotic expansion of the heat kernel up to any order. Our approach is probabilistic and the heat kernel is regarded as the density of the law of a hypoelliptic diffusion process, which is realized as a unique solution of the corresponding stochastic differential equation. Our main tools are S. Watanabe's distributional Malliavin calculus and T. Lyons' rough path theory.

Summary

We haven't generated a summary for this paper yet.