Personalized Ranking for Context-Aware Venue Suggestion (1705.07311v1)
Abstract: Making personalized and context-aware suggestions of venues to the users is very crucial in venue recommendation. These suggestions are often based on matching the venues' features with the users' preferences, which can be collected from previously visited locations. In this paper we present a novel user-modeling approach which relies on a set of scoring functions for making personalized suggestions of venues based on venues content and reviews as well as users context. Our experiments, conducted on the dataset of the TREC Contextual Suggestion Track, prove that our methodology outperforms state-of-the-art approaches by a significant margin.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.