Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling User Preferences using Word Embeddings for Context-Aware Venue Recommendation (1606.07828v1)

Published 24 Jun 2016 in cs.IR

Abstract: Venue recommendation aims to assist users by making personalised suggestions of venues to visit, building upon data available from location-based social networks (LBSNs) such as Foursquare. A particular challenge for this task is context-aware venue recommendation (CAVR), which additionally takes the surrounding context of the user (e.g. the user's location and the time of day) into account in order to provide more relevant venue suggestions. To address the challenges of CAVR, we describe two approaches that exploit word embedding techniques to infer the vector-space representations of venues, users' existing preferences, and users' contextual preferences. Our evaluation upon the test collection of the TREC 2015 Contextual Suggestion track demonstrates that we can significantly enhance the effectiveness of a state-of-the-art venue recommendation approach, as well as produce context-aware recommendations that are at least as effective as the top TREC 2015 systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jarana Manotumruksa (3 papers)
  2. Craig Macdonald (49 papers)
  3. Iadh Ounis (36 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.