Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Location-Aided Beam Alignment in Millimeter Wave Massive MIMO (1705.01002v2)

Published 2 May 2017 in cs.IT and math.IT

Abstract: Location-aided beam alignment has been proposed recently as a potential approach for fast link establishment in millimeter wave (mmWave) massive MIMO (mMIMO) communications. However, due to mobility and other imperfections in the estimation process, the spatial information obtained at the base station (BS) and the user (UE) is likely to be noisy, degrading beam alignment performance. In this paper, we introduce a robust beam alignment framework in order to exhibit resilience with respect to this problem. We first recast beam alignment as a decentralized coordination problem where BS and UE seek coordination on the basis of correlated yet individual position information. We formulate the optimum beam alignment solution as the solution of a Bayesian team decision problem. We then propose a suite of algorithms to approach optimality with reduced complexity. The effectiveness of the robust beam alignment procedure, compared with classical designs, is then verified on simulation settings with varying location information accuracies.

Citations (60)

Summary

We haven't generated a summary for this paper yet.