Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Lie symmetries of nonlinear parabolic-elliptic systems and their application to a tumour growth model (1704.07696v1)

Published 25 Apr 2017 in math-ph and math.MP

Abstract: A generalisation of the Lie symmetry method is applied to classify a coupled system of reaction-diffusion equations wherein the nonlinearities involve arbitrary functions in the limit case in which one equation of the pair is quasi-steady but the other not. A complete Lie symmetry classification, including a number of the cases characterised being unlikely to be identified purely by intuition, is obtained. Notably, in addition to the symmetry analysis of the PDEs themselves, the approach is extended to allow the derivation of exact solutions to specific moving-boundary problems motivated by biological applications tumour growth). Graphical representations of the solutions are provided and biological interpretation addressed briefly. The results are generalised on multi-dimensional case under assumption of radially symmetrical shape of the tumour.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.