Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

3D seismic data denoising using two-dimensional sparse coding scheme (1704.04429v1)

Published 8 Apr 2017 in cs.CV and cs.CE

Abstract: Seismic data denoising is vital to geophysical applications and the transform-based function method is one of the most widely used techniques. However, it is challenging to design a suit- able sparse representation to express a transform-based func- tion group due to the complexity of seismic data. In this paper, we apply a seismic data denoising method based on learning- type overcomplete dictionaries which uses two-dimensional sparse coding (2DSC). First, we model the input seismic data and dictionaries as third-order tensors and introduce tensor- linear combinations for data approximation. Second, we ap- ply learning-type overcomplete dictionary, i.e., optimal sparse data representation is achieved through learning and training. Third, we exploit the alternating minimization algorithm to solve the optimization problem of seismic denoising. Finally we evaluate its denoising performance on synthetic seismic data and land data survey. Experiment results show that the two-dimensional sparse coding scheme reduces computational costs and enhances the signal-to-noise ratio.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.