Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Two-Dimensional Sparse Coding Using Tensor-Linear Combination (1703.09690v1)

Published 28 Mar 2017 in cs.CV

Abstract: Sparse coding (SC) is an automatic feature extraction and selection technique that is widely used in unsupervised learning. However, conventional SC vectorizes the input images, which breaks apart the local proximity of pixels and destructs the elementary object structures of images. In this paper, we propose a novel two-dimensional sparse coding (2DSC) scheme that represents the input images as the tensor-linear combinations under a novel algebraic framework. 2DSC learns much more concise dictionaries because it uses the circular convolution operator, since the shifted versions of atoms learned by conventional SC are treated as the same ones. We apply 2DSC to natural images and demonstrate that 2DSC returns meaningful dictionaries for large patches. Moreover, for mutli-spectral images denoising, the proposed 2DSC reduces computational costs with competitive performance in comparison with the state-of-the-art algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.