Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Strictly Proper Kernel Scoring Rules and Divergences with an Application to Kernel Two-Sample Hypothesis Testing (1704.02578v2)

Published 9 Apr 2017 in stat.ML

Abstract: We study strictly proper scoring rules in the Reproducing Kernel Hilbert Space. We propose a general Kernel Scoring rule and associated Kernel Divergence. We consider conditions under which the Kernel Score is strictly proper. We then demonstrate that the Kernel Score includes the Maximum Mean Discrepancy as a special case. We also consider the connections between the Kernel Score and the minimum risk of a proper loss function. We show that the Kernel Score incorporates more information pertaining to the projected embedded distributions compared to the Maximum Mean Discrepancy. Finally, we show how to integrate the information provided from different Kernel Divergences, such as the proposed Bhattacharyya Kernel Divergence, using a one-class classifier for improved two-sample hypothesis testing results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.