Papers
Topics
Authors
Recent
2000 character limit reached

Kernel Two-Sample Tests in High Dimension: Interplay Between Moment Discrepancy and Dimension-and-Sample Orders

Published 31 Dec 2021 in math.ST, stat.ML, and stat.TH | (2201.00073v3)

Abstract: Motivated by the increasing use of kernel-based metrics for high-dimensional and large-scale data, we study the asymptotic behavior of kernel two-sample tests when the dimension and sample sizes both diverge to infinity. We focus on the maximum mean discrepancy (MMD) using isotropic kernel, including MMD with the Gaussian kernel and the Laplace kernel, and the energy distance as special cases. We derive asymptotic expansions of the kernel two-sample statistics, based on which we establish the central limit theorem (CLT) under both the null hypothesis and the local and fixed alternatives. The new non-null CLT results allow us to perform asymptotic exact power analysis, which reveals a delicate interplay between the moment discrepancy that can be detected by the kernel two-sample tests and the dimension-and-sample orders. The asymptotic theory is further corroborated through numerical studies.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.