Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Embedded Collaborative Filtering for "Cold Start" Prediction (1704.02552v1)

Published 9 Apr 2017 in cs.IR

Abstract: Using only implicit data, many recommender systems fail in general to provide a precise set of recommendations to users with limited interaction history. This issue is regarded as the "Cold Start" problem and is typically resolved by switching to content-based approaches where extra costly information is required. In this paper, we use a dimensionality reduction algorithm, Word2Vec (W2V), originally applied in Natural Language Processing problems under the framework of Collaborative Filtering (CF) to tackle the "Cold Start" problem using only implicit data. This combined method is named Embedded Collaborative Filtering (ECF). An experiment is conducted to determine the performance of ECF on two different implicit data sets. We show that the ECF approach outperforms other popular and state-of-the-art approaches in "Cold Start" scenarios.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.