Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Filtering via Implicit Trust-based Network (1112.2388v1)

Published 11 Dec 2011 in physics.data-an and cs.IR

Abstract: Based on the user-item bipartite network, collaborative filtering (CF) recommender systems predict users' interests according to their history collections, which is a promising way to solve the information exploration problem. However, CF algorithm encounters cold start and sparsity problems. The trust-based CF algorithm is implemented by collecting the users' trust statements, which is time-consuming and must use users' private friendship information. In this paper, we present a novel measurement to calculate users' implicit trust-based correlation by taking into account their average ratings, rating ranges, and the number of common rated items. By applying the similar idea to the items, a item-based CF algorithm is constructed. The simulation results on three benchmark data sets show that the performances of both user-based and item-based algorithms could be enhanced greatly. Finally, a hybrid algorithm is constructed by integrating the user-based and item-based algorithms, the simulation results indicate that hybrid algorithm outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also alleviate the cold start problem.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhao-Guo Xuan (2 papers)
  2. Zhan Li (59 papers)
  3. Jian-Guo Liu (152 papers)

Summary

We haven't generated a summary for this paper yet.