Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BLASFEO: basic linear algebra subroutines for embedded optimization (1704.02457v3)

Published 8 Apr 2017 in cs.MS

Abstract: BLASFEO is a dense linear algebra library providing high-performance implementations of BLAS- and LAPACK-like routines for use in embedded optimization. A key difference with respect to existing high-performance implementations of BLAS is that the computational performance is optimized for small to medium scale matrices, i.e., for sizes up to a few hundred. BLASFEO comes with three different implementations: a high-performance implementation aiming at providing the highest performance for matrices fitting in cache, a reference implementation providing portability and embeddability and optimized for very small matrices, and a wrapper to standard BLAS and LAPACK providing high-performance on large matrices. The three implementations of BLASFEO together provide high-performance dense linear algebra routines for matrices ranging from very small to large. Compared to both open-source and proprietary highly-tuned BLAS libraries, for matrices of size up to about one hundred the high-performance implementation of BLASFEO is about 20-30% faster than the corresponding level 3 BLAS routines and 2-3 times faster than the corresponding LAPACK routines.

Citations (81)

Summary

We haven't generated a summary for this paper yet.