Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Kimi K2 210 tok/s Pro
2000 character limit reached

Tensor Completion via Tensor Train Based Low-Rank Quotient Geometry under a Preconditioned Metric (2209.04786v3)

Published 11 Sep 2022 in math.OC

Abstract: This paper investigates the low-rank tensor completion problem, which is about recovering a tensor from partially observed entries. We consider this problem in the tensor train format and extend the preconditioned metric from the matrix case to the tensor case. The first-order and second-order quotient geometry of the manifold of fixed tensor train rank tensors under this metric is studied in detail. Algorithms, including Riemannian gradient descent, Riemannian conjugate gradient, and Riemannian Gauss-Newton, have been proposed for the tensor completion problem based on the quotient geometry. It has also been shown that the Riemannian Gauss-Newton method on the quotient geometry is equivalent to the Riemannian Gauss-Newton method on the embedded geometry with a specific retraction. Empirical evaluations on random instances as well as on function-related tensors show that the proposed algorithms are competitive with other existing algorithms in terms of recovery ability, convergence performance, and reconstruction quality.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.